• Users Online: 125
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
Year : 2015  |  Volume : 1  |  Issue : 2  |  Page : 114-118

Ultrasound-Assisted Low-Density Solvent Dispersive Liquid-Liquid Extraction for the Determination of Amphetamines in Biological Samples Using Gas Chromatography-Mass Spectrometry

1 Department of Forensic Science, Fujian Police College, Fuzhou 350007, PR, China
2 Traffic Management Bureau, Beijing Municipal Public Security Bureau, Beijing 100037, PR, China
3 College of Forensic Science, People's Public Security University of , Beijing 100038, China
4 Legal Affairs Section, Hunan Provincial Public Security Department, Changsha 410001, China

Correspondence Address:
Liang Meng
Department of Forensic Science, Fujian Police College, 59, Shoushan Road, Cangshan District, Fuzhou 350007
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/2349-5014.164654

Rights and Permissions

In order to control drug crime effectively, it is necessary to develop selective analytical methods suitable for unambiguous identification and determination of drugs in illicit samples and biological matrices. A novel microextraction technique based on ultrasound-assisted low-density solvent dispersive liquid-liquid microextraction, (UA-LDS-DLLME) has been applied to the determination of four amphetamines (methamphetamine, amphetamine, 3,4-methylenedioxymethamphetamine, and 3,4-methylenedioxyamphetamine) in urine samples by gas chromatography-mass spectrometry. The parameters affecting extraction efficiency have been investigated and optimized. UA-LDS-DLLME used ultrasound energy to assist in the emulsification process without any disperser solvent. Under the optimized conditions, linearity was observed for all analytes in the 0.15–10 μg/mL range with correlation coefficients (R) ranging from 0.9886 to 0.9894. The recoveries of 75.6–91.4% with relative standard deviations of 2.5–4.0% were obtained. The limits of detection (S/N = 3) were estimated to be in the 5–10 ng/mL range. The UA-LDS-DLLME technique had the advantages of shorter extraction time, suitability for simultaneous pretreatments of batches of samples, and the higher extraction efficiency. It was successfully applied to the analysis of amphetamines in real human urine samples.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded266    
    Comments [Add]    

Recommend this journal