• Users Online: 55
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2015  |  Volume : 1  |  Issue : 2  |  Page : 109-113

Detection of TNT by Surface Plasmon Resonance Based on Molecularly Imprinted Polymers


1 Key Laboratory of Evidence Science, University of Political Science and Law, Ministry of Education; Institute of Forensic Science, Ministry of Public Security, Beijing, China
2 Key Laboratory of Evidence Science, University of Political Science and Law, Ministry of Education, Beijing, China
3 Key Laboratory of Evidence Science, University of Political Science and Law, Ministry of Education; Collaborative Innovation Center of Judicial Civilization, China

Correspondence Address:
Hongxia Hao
Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing - 100088
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2349-5014.162780

Rights and Permissions

2,4,6-trinitrotoluene (TNT) is a commonly used explosive. It is not only a threat to public safety but also causes environmental pollution, affecting human health. However, at this stage of TNT detection, technology cannot meet the demands of the current situation. To acquire a new method devoted to the study of fast and quantitative detection of TNT. It combines the molecular imprinting technique (MIT) with surface plasmon resonance (SPR) technology for high sensitivity. In this study, a molecularly imprinted polymer (MIP) film for the detection of TNT was synthesized by heat in acetonitrile at 60°C, using the TNT imprinting molecule and azobisisobutyronitrile (AIBN) as initiators. In the present work, there are many factors that can influence the elution efficiency, such as raw material ratios,fore-reaction time, reaction time, etc. The polymers have the highest elution efficiency when raw material mole ratios [n(TNT):n methacrylic acid (MAA):n ethylene glycol dimethylacrylate (EGDMA)] were 1:4:8; the MIP sensor could detect a TNT concentration as low as 1×10-10 M. Compared to the blank polymer with the same chemical composition, the imprinted polymer had higher binding efficiency and higher selectivity.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2476    
    Printed83    
    Emailed0    
    PDF Downloaded270    
    Comments [Add]    
    Cited by others 1    

Recommend this journal