• Users Online: 260
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2020  |  Volume : 6  |  Issue : 1  |  Page : 5-11

Study of autosomal short tandem repeat loci using ITO method in full-sibling identification


1 Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security; Collaborative Innovation Center of Judicial Civilization, Key Laboratory of Evidence Science (China University of Political Science and Law), Ministry of Education, Beijing, PR China
2 Collaborative Innovation Center of Judicial Civilization, Key Laboratory of Evidence Science (China University of Political Science and Law), Ministry of Education, Beijing, PR China
3 Department of Criminal Science and Technology, Beijing Police College, Beijing, PR China
4 Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing, PR China

Correspondence Address:
Li Yuan
Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing; Collaborative Innovation Center of Judicial Civilization, Key Laboratory of Evidence Science (China University of Political Science and Law), Ministry of Education, Beijing
PR China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1735-3327.280895

Rights and Permissions

This study aimed to investigate the application of autosomal short tandem repeat (STR) loci using the ITO method and discriminant function algorithm for full-sibling (FS) identification. A total of 342 pairs of full siblings (FSs) and 3900 pairs of unrelated individuals (UIs) were genotyped at 51 STR loci. The groups were in accordance with discrimination power (DP) values and the number of loci, and the values of FS index (FSI) of FSs and UIs were calculated by the ITO method. The discriminant functions of FS–UI were established using the Fisher's discriminant analysis method with SPSS 19.0 software. All the lgFSI values in the FS and UI groups followed a normal distribution, and there were significant differences between the two pairs. A higher average DP value was associated with a more significant difference, as was a greater number of STR loci detected. Receiver operator characteristic curves showed that the accuracy of FS identification can be affected by both locus polymorphism and the number of loci detected. Comparing the rate of false positives and false negatives of discriminant function between the two groups, a higher average DP value and larger number of loci detected were associated with a lower rate of miscarriage of justice and were more helpful for FS–UI identification. The ITO-based discriminant analysis method has high applicability in FS–UI tests. Testing of a greater number of STR loci promotes FS identification.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed796    
    Printed60    
    Emailed0    
    PDF Downloaded126    
    Comments [Add]    

Recommend this journal