• Users Online: 227
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2018  |  Volume : 4  |  Issue : 3  |  Page : 129-134

Mitochondrial DNA-based identification of developmental stages and empty puparia of forensically important flies (Diptera) in Egypt


1 Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
2 Department of Life Science, University of Bordeaux; Interdisciplinary Institute of Neuroscience, UMR 5297, CNRS, Bordeaux, France
3 Department of Biology and Geology, Faculty of Education, Alexandria University, Alexandria, Egypt
4 Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt; Department of Life Science, University of Bordeaux; Interdisciplinary Institute of Neuroscience, UMR 5297, CNRS, Bordeaux, France
5 Department of Biology and Geology, Faculty of Education, Alexandria University, Alexandria, Egypt; Department of Life Science, Faculty of Biology, Technische Universität Dresden, Dresden, Germany

Correspondence Address:
Prof. Marie Z Moftah
Department of Zoology, Faculty of Science, Alexandria University, Alexandria
Egypt
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jfsm.jfsm_17_18

Rights and Permissions

Relying on morphology in the estimation of postmortem intervals is not always accurate for all life phases of flies, especially for immature stages. The present study demonstrates the application of cytochrome oxidase I sequences, a partial mitochondrial (mt) gene region, to differentiate forensically important flies in Alexandria, Egypt. Thirty-three adult flies, larvae, and pupae were collected from rabbit carcasses. Nineteen were used for genotyping. Sequence analysis revealed no significant intraspecific divergence in Diptera species. Accordingly, a neighbor-joining tree using the Kimura 2-parameter model illustrated reciprocal morphology between species. Specimens represented five species, four genera, four subfamilies, two families, and one order. We herein identify five different Diptera species, Chrysomya albiceps, Chrysomya megacephala, Calliphora vicina, Lucilia sericata, and Ophyra capensis, using mt DNA as a species-specific marker for identification in a local database set-up.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed710    
    Printed49    
    Emailed0    
    PDF Downloaded84    
    Comments [Add]    

Recommend this journal